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Abstract: In this article, we use a direct method namely simple equation method to construct the traveling wave

solutions for some nonlinear evolution equations in mathematical physics via, the nonlinear Schrodinger equa-

tion with dual power law nonlinearity, the nonlinear variant Boussinesq differential equations, the nonlinear

generalized- Zakharov equations and the nonlinear coupled Maccaris equations. In the simple equation method,

we suppose the trial equation satisfies the first order Bernoulli differential equation or the first order Riccati differ-

ential equation. It has been shown that this method provides a powerful mathematical tool for solving nonlinear

wave equations in mathematical physics and engineering problems.
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1 Introduction

Nonlinear partial differential equations have become

a rather vast subject with a long history of deep and

fruitful connections with many other areas of mathe-

matics and various sciences like physics, mechanics,

chemistry, and engineering[1]. There are many meth-

ods for finding analytic solutions for nonlinear par-

tial differential equations. Among these methods are

the sine-cosine method [2], the similarity reductions

method [3,4], the inverse scattering transform method

[5], various tanh method [6-9], the Backland trans-

formation [10], the homogenous balance method [11],

the exp- function method [12], the variable separation

approach [13], (G′/G)-expansion method [14,15], the

Darboux transformation [16], the sub-ODE method

[17], the Hirota bilinear method[18], and the Jacobi

elliptic function expansion method [19].

In this paper, we deduce the traveling wave solutions

for some nonlinear evolution in mathematical physics

namely, the nonlinear Schrodinger equation with dual

power law nonlinearity, the nonlinear variant Boussi-

nesq differential equations, the nonlinear generalized-

Zakharov equations and the nonlinear coupled Mac-

caris equations by using the simple equation method.

The simple equation method is a very powerful math-

ematical technique for finding exact solutions to the

nonlinear evolution equations. It has been developed

by Kadreyshov [20,21] and used successfully by many

authors to obtain the exact solution for nonlinear evo-

lution equations in mathematical physics [22,23].

2 Algorithm of the simple equation

method

To describe our solution process, let us focus on a

scalar (1+1)- dimensional nonlinear partial equation:

P (u, ut, ux, utt, uxx, uxt, ...) = 0, (1)

where u(x, t) is an unknown function, P is a poly-

nomial of u(x, t) and its partial derivatives in which

the highest order derivatives and nonlinear terms are

involved. In the following, we give the main steps of

the simple equation method:-

Step 1. We suppose the traveling wave transfor-

mation

u(x, t) = u(ξ), ξ = x − ct, (2)

where c is an arbitrary constant. The traveling wave

transformation Eq. (2) permits us to reduce Eq.(1) to

the following ordinary differential equation (ODE):

Q(u, u′, u′′, ...) = 0, (3)

where Q is a polynomial of u(ξ) and its derivatives,

with respect to ξ.

Step 2. We seek the solution of Eq.(3) in the

following form:

u(ξ) =
N

∑

i=0

aiF
i(ξ). (4)
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where ai(i = 0, 1, 2, ..., N) are arbitrary constants to

be determined later and F (ξ) satisfies the trial simple

equation. The simple equation has two properties, the

first one it is of lesser order than Eq.(3) and the sec-

ond, its general solution is known.

In this paper, the simple equations we shall use are

the Bernoulli and Riccati differential equations which

are well known nonlinear ordinary differential equa-

tions, and their solutions can be expressed by elemen-

tary functions.

Step 3. The balance number N can be determined by

balancing the highest order derivative and nonlinear

terms in Eq. (3).

Step 4. We discuss the general solutions of the simple

equation. For the Bernoulli equation

F ′(ξ) = rF (ξ) + dF 2(ξ). (5)

where r and d are arbitrary constants.

The general solution of Eq.(5) takes the following

form:

F (ξ) =
r exp[r(ξ + ξ0)]

1 − d exp[r(ξ + ξ0)]
, d < 0, r > 0, (6)

where ξ0 is the integration constant and

F (ξ) = − r exp[r(ξ + ξ0)]

1 + d exp[r(ξ + ξ0)]
, d > 0, r < 0. (7)

For the Riccati equation

F ′(ξ) = αF 2(ξ) + β. (8)

The general solutions of Eq.(8) take the following

form [23]:

(i)When αβ < 0 and ξ is a positive number

F (ξ) = −
√
−αβ
α

tanh(
√
−αβξ − ν ln(ξ0)

2 ). (9)

(ii)When αβ > 0 and ξ is a real number

F (ξ) =
√

αβ
α

tan(
√

αβ(ξ + ξ0)). (10)

Remark 1.

(i) When r = δ and d = −1, Eq. (5) has another form

of the Bernoulli equation

F ′(ξ) = δF (ξ) − F 2(ξ), (11)

which has the exact solutions

F (ξ) =
δ

2

[

1 + tanh(
δ

2
(ξ + ξ0))

]

, (12)

when δ > 0, and

F (ξ) =
δ

2

[

1 − tanh(
δ

2
(ξ + ξ0))

]

(13)

when δ < 0.

(ii) When r = 1 and d = −1, Eq. (5) has an-

other form of the first order Riccati equation [20,21]

F ′(ξ) − F (ξ) + F 2(ξ) = 0, (14)

which has the logistic function as its exact solution

F (ξ) =
1

1 + e−δ
. (15)

The logistic equation (15) can be presented in the hy-

perbolic tangent function according to the relation

1

1 + e−ξ
=

1

2

[

1 + tanh(
ξ

2
)

]

. (16)

3 Applications of the simple equation

method for NPDEs

In this section, we use the simple equation method to

find the traveling wave solutions for nonlinear evo-

lution equations in mathematical physics namely, the

nonlinear Schrodinger equation with dual power law

nonlinearity, the nonlinear variant Boussinesq differ-

ential equations, the nonlinear generalized- Zakharov

equations and the nonlinear coupled Maccaris equa-

tions which have attracted a great deal of interest in

mathematical physics and engineering research.

3.1 Nonlinear Schrodinger equation with

dual power law nonlinearity

In this section, we use the proposed method to study

the following nonlinear Schrodinger equation with

dual power law

iψt+aψxx+(b |ψ|2n+h |ψ|4n)ψ+q

{

(|ψ|)xx

|ψ|

}

ψ = 0.

(17)

where a, b, h and q are arbitrary constants. The

Schrodinger equation is a partial differential equa-

tion that describes how the quantum state of a quan-

tum system changes with time. In 1926, Erwin

Schrodinger found a new equation which is called the

time independent Schrodinger equation. This equa-

tion has sufficiently illuminated the atomic phenom-

ena and became the dynamical centerpiece of quan-

tum wave mechanics [24]. This equation has been in-

dicated to manage the evolution of a wave packet in
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a weakly nonlinear and dispersive medium. Another

implementation of this equation is in pattern forma-

tion, where it has been used to model some non equi-

librium pattern forming systems. It is now widely

used in the optics field as a good model for optical

pulse propagation in nonlinear fibers[25]. Using the

traveling wave transformation:-

ψ(x, t) = U(ξ)ei(−kx+ωt+θ), ξ = x + 2kat, (18)

where k, ω and θ are arbitrary constants to be deter-

mined later. The traveling wave transformation (18)

permits us to convert Eq. (17) to the following ordi-

nary differential equation:

(a + q)U ′′ − (ω + ak2)U + bU2n+1 + hU4n+1 = 0.
(19)

We suppose the solution of Eq. (19) has the form Eq.

(4). Balancing the highest order derivative U ′′ with

the nonlinear term U4n+1 we have, N = 1
2n

. Conse-

quently, we take the transformation:-

U(ξ) = [φ(ξ)]
1

2n , (20)

where φ is an arbitrary function of ξ. Equation (19)

leads to write Eq. (20) in the following form:

(a + q)

[

1

2n
(

1

2n
− 1)φ−1(φ′)2 +

1

2n
φ′′

]

− (ω + ak2)φ + bφ2 + hφ3 = 0.

(21)

Balancing the highest order derivative terms φ′′ with

the nonlinear terms φ3 in Eq.(21). Therefore the

solution of Eq.(21) can be expressed as follows:

φ(ξ) = a
0
+ a

1
F (ξ), (22)

where a0 and a1 are arbitrary constants to be deter-

mined later. Substituting Eq.(22) along with the trial

simple equation (5) into Eq.(21) and cleaning the de-

nominator, collecting all terms with the same order of

F (ξ) together, the left hand side of Eq.(21) are con-

verted into polynomial in F (ξ). Setting each coef-

ficient of these polynomials to be zero, we derive a

set of algebraic equations for a0, a1, a, b, h, q, ω and

k. Solving this set of over-determined algebraic equa-

tions by using Maple software package, we get the

following results:

a0 = ±
√

−h(q + 2q + a + 2an)r

2hn
,

a1 = ±
√

−h(q + 2q + a + 2an)d

2hn
,

b = ± hr(q + 2q + a + 2an)
√

−h(q + 2q + a + 2an)n
,

ω =
(a + q)r2 − 4ak2n2

4n2
, (23)

where a, h, d, k, q and r are arbitrary constants. The

solution of Eq. (21) is given by

φ1(x, t) = ±
√

−h(q + 2q + a + 2an)r

2hn

±
√

−h(q + 2q + a + 2an)dr exp [rξ]

2hn (1 − d exp [r(x + 2kat + ξ0)])
,

(24)

when d < 0 and r > 0 . Substituting Eq.(24) into

Eq.(20) we have:

U1(x, t) = [±
√

−h(q + 2q + a + 2an)r

2hn

±
√

−h(q + 2q + a + 2an)d

2hn

r exp [rξ]

(1 − d exp [rξ])
]

1

2n

(25)

where ξ = x + 2kat + ξ0. Therefore from Eq.(25)
and Eq.(18) the solution of Eq.(17) takes the following
form:

ψ1(x, t) = exp[i(−kx + ωt + θ)][±
√

−h(q + 2q + a + 2an)r

2hn

±
√

−h(q + 2q + a + 2an)dr exp [r(x + 2kat + ξ0)]

2hn (1 − d exp [r(x + 2kat + ξ0)])
]

1

2n .

(26)

The solution of Eq.(17) is given by:

φ2(x, t) = ±
√

−h(q + 2q + a + 2an)r

2hn

∓
√

−h(q + 2q + a + 2an)dr exp [r(x + 2kat + ξ0)]

2hn (1 + d exp [r(x + 2kat + ξ0)])
,

(27)

when d > 0 and r < 0 . Substituting Eq.(27) into Eq.(20)

we have:

U2(x, t) = [±
√

−h(q + 2q + a + 2an)r

2hn

∓
√

−h(q + 2q + a + 2an)dr exp [r(x + 2kat + ξ0)]

2hn (1 + d exp [r(x + 2kat + ξ0)])
]

1

2n

(28)

Therefore from Eqs.(28) and (18) the solution of Eq.(17)

takes the following form:

ψ2(x, t) = exp[i(−kx + ωt + θ)][±
√

−h(q + 2q + a + 2an)r

2hn

±
√

−h(q + 2q + a + 2an)dr exp [r(x + 2kat + ξ0)]

2hn (1 + d exp [r(x + 2kat + ξ0)])
]

1

2n .

(29)
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3.2 Numerical solutions for Nonlinear

Schrodinger equation with dual power

law nonlinearity

In this section, we present some graphs of the traveling

wave solutions by taking suitable values of the parameters

to visualize the mechanism of the original equation (17).

For h = 2, r = 1.5, ω = 1, q = 1.25, d = −1, k =
0.5, n = 0.5, θ = 0.75, a = 2.5 and ξ0 = 3. , Fig 1.a

illustrates the real part of the traveling wave solution (26),

Fig 1.b represents the imaginary part of the traveling wave

solution , Fig 1.c represent the projection t = 0, of the

real part solution (26), and Fig 1.d represents the projec-

tion t = 0, of the imaginary port solution.

Also for h = 2, r = −1.5, ω = 1, q = 1.25, d = 1, k =
0.5, n = 0.5, θ = 0.75, a = 2.5 and ξ0 = 3. , Fig 2.a illus-

trates the real part of the traveling wave solution (29), Fig

2.b represents the imaginary part of the traveling wave solu-

tion, Fig 2.c represent the projection t = 0, of the real part

solution (29), and Fig 2.d represents the projection t = 0,
of the imaginary port solution.

3.3 The variant Boussinesq nonlinear differ-

ential equations

The Boussinesq equation is a well-known model for long

water waves of moderate amplitude, and describes in one

dimension the weakly nonlinear internal wave which de-

velops at the boundary between two immiscible fluids. In

addition, the equation is a simplified model of the atmo-

spheric moment equation which is applicable to mesoscale

and quasi-incompressible fluids. In the present section, we

focus on the variant Boussinesq equation, which was de-

rived by Sachs [26]in 1988 as a model for water waves:

Ht + (Hu)x + uxxx = 0,

ut + Hx + uux = 0,
(30)

where u(x, t) is the velocity and H(x, t) is the height of

free waves surface in the trough, and the subscripts denote

partial derivatives [27]. Suppose the traveling wave trans-

formation equation:-

u(x, t) = U(ξ),H(x, t) = φ(ξ), ξ = x − ct. (31)

The traveling wave transformation (31) permits us to re-

duce (30) into the following ODE:-

U ′′′ + φ′U + φU ′ − cφ′ = 0,

− cU ′ + φ′ + UU ′ = 0.
(32)

By integrating the second equation of Eqs. (32) we have:

φ =
−U2

2
+ cU − c1, (33)

where c1 is the integration constant. Substituting Eq.(33)

into the first one in Eqs.(32), we get:-

U ′′′ − (c1 + c2)U ′ − 3

2
U2U ′ + 3cUU ′ = 0. (34)

Fig 1.a The real part of the traveling wave solu-

tion (26) when the parameters take the special values

h = 2, r = 1.5, ω = 1, q = 1.25, d = −1, k =
0.5, n = 0.5, θ = 0.75, a = 2.5 and ξ0 = 3.

Fig 1.b The imaginary part of the traveling wave

solution (26) when the parameters take the special

values h = 2, r = 1.5, ω = 1, q = 1.25, d = −1, k =
0.5, n = 0.5, θ = 0.75, a = 2.5 and ξ0 = 3.

Fig 1.c The projection of real part of the solu-

tion (26) when the parameters take the special values

h = 2, r = 1.5, ω = 1, q = 1.25, d = −1, k =
0.5, n = 0.5, θ = 0.75, a = 2.5 and ξ0 = 3.
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Fig 1.d The projection of imaginary part of the

solution (26) when the parameters take the special

values h = 2, r = 1.5, ω = 1, q = 1.25, d = −1, k =
0.5, n = 0.5, θ = 0.75, a = 2.5 and ξ0 = 3.

Fig 2.a The real part of the traveling wave solu-

tion (29) when the parameters take the special values

h = 2, r = −1.5, ω = 1, q = 1.25, d = 1, k =
0.5, n = 0.5, θ = 0.75, a = 2.5 and ξ0 = 3.

Fig 2.b The imaginary part of the traveling wave

solution (29) when the parameters take the special

values h = 2, r = −1.5, ω = 1, q = 1.25, d = 1, k =
0.5, n = 0.5, θ = 0.75, a = 2.5 and ξ0 = 3.

Fig 2.c The projection of the real part of the

traveling wave solution (29) when the parameters

take the special values h = 2, r = −1.5, ω = 1, q =
1.25, d = 1, k = 0.5, n = 0.5, θ = 0.75, a = 2.5 and

ξ0 = 3.

Fig 2.d The projection of the imaginary part of

the traveling wave solution (29) when the parameters

take the special values h = 2, r = −1.5, ω = 1, q =
1.25, d = 1, k = 0.5, n = 0.5, θ = 0.75, a = 2.5 and

ξ0 = 3.

Fig 3.a The traveling wave solution (39)

when the parameters take the special values

d = −1.5, r = 2, c = 2.5 and ξ0 = 3.
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By integrate Eq.(34), we have

U ′′ − 1

2
U3 +

3

2
cU2 − (c1 + c2)U + c2 = 0. (35)

Balancing the highest order derivative U ′′ with the nonlin-

ear term U3 in Eq. (32), the solution of Eq.(35) can be

expressed as follows:

U(ξ) = a0 + a1F (ξ), (36)

where a0 and a1 are constants to be determined later.

Substituting Eq.(36) along with the simple trial equation

F ′(ξ) = rF (ξ)+dF 2(ξ) into Eq.(35). collecting all terms

with the same order of F (ξ) together, the left hand side

of Eq.(35) is converted into a polynomial in F (ξ). Setting

each coefficient of this polynomial to zero, we derive a set

of algebraic equations for a0, a1, c, c1 and c2. Solving the

set of algebraic equations by using Maple or Mathematica

software package, we get the following results:

Case 1.

a0 = r + c, a1 = 2d, c1 = −1

2
(r2 + c2),

c2 =
1

2
(c3 − r2c).

(37)

Case 2.

a0 = −r + c, a1 = −2d, c1 =
1

2
(c2 − r2),

c2 =
1

2
(c3 − r2c),

(38)

where c, r and d are arbitrary constants.

The solution of Eqs. (30) with using case (1) is given by

u1(x, t) = r + c +
2dr exp [r(x − ct + ξ0)]

(1 − d exp [r(x − ct + ξ0)])
, (39)

when d < 0 and r > 0. Substituting Eq.(39) into Eq.(33)

to get:

H1(x, t) = −1

2
[r + c +

2dr exp [r(x − ct + ξ0)]

(1 − d exp [r(x − ct + ξ0)])
]2

+c[r + c +
2dr exp [r(x − ct + ξ0)]

(1 − d exp [r(x − ct + ξ0)])
] +

1

2
(r2 + c2).

(40)

Also, the solution of Eqs. (30) with using case (2) is given

by

u2(x, t) = c − r − 2dr exp [r(x − ct + ξ0)]

(1 − d exp [r(x − ct + ξ0)])
. (41)

when d < 0 and r > 0. Consequently substituting Eq.(41)

into Eq.(33) to get:

H2(x, t) = −1

2
[c − r − 2dr exp [r(x − ct + ξ0)]

(1 − d exp [r(x − ct + ξ0)])
]2

+c[c − r − 2dr exp [r(x − ct + ξ0)]

(1 − d exp [r(x − ct + ξ0)])
] − 1

2
(c2 − r2).

(42)

The solution of Eqs. (30) with using case (1) is given by

u3(x, t) = r + c − 2dr exp [r(x − ct + ξ0)]

(1 + d exp [r(x − ct + ξ0)])
, (43)

when d > 0 and r < 0. Substituting Eq.(43) into Eq.(33),

we have:

H3(x, t) = −1

2
[r + c − 2dr exp [r(x − ct + ξ0)]

(1 + d exp [r(x − ct + ξ0)])
]2

+c[r + c − 2dr exp [r(x − ct + ξ0)]

(1 + d exp [r(x − ct + ξ0)])
] +

1

2
(r2 + c2).

(44)

Also, the solution of Eqs. (30) with using case (2) is given

by

u4(x, t) = c − r +
2dr exp [r(x − ct + ξ0)]

(1 + d exp [r(x − ct + ξ0)])
, (45)

when d > 0 and r < 0. Substituting Eq.(45) into Eq.(33)

to get:

H4(x, t) = −1

2
[c − r +

2dr exp [r(x − ct + ξ0)]

(1 + d exp [r(x − ct + ξ0)])
]2

+c[c − r +
2dr exp [r(x − ct + ξ0)]

(1 + d exp [r(x − ct + ξ0)])
] − 1

2
(c2 − r2).

(46)

3.4 Numerical solutions for the variant

Boussinesq nonlinear differential equa-

tions

In this section, we present some graphs of the traveling

wave solutions by taking suitable values of the parameters

to visualize the mechanism of the original equation(30).

For d = −1.5, r = 2, c = 2.5 and ξ0 = 3, Fig 3.a illus-

trates the traveling wave solution (39), Fig 3.b represents

the traveling wave solution (40), Fig 3.c represents the

projection t = 0, of the traveling wave solution (39), and

Fig 3.d represents the projection t = 0, of the traveling

wave solution (40).

Also,for d = 2.2,r = −0.5,c = 2.5and ξ0 = 3. Fig 4.a

illustrates the traveling wave solution (45), Fig 4.b repre-

sents the traveling wave solution (46), Fig 4.c represents

the projection t = 0, of the traveling wave solution (45),

and Fig 4.d represents the projection t = 0, of the traveling

wave solution (46).

3.5 The generalized-Zakharov equations

In this section, we study the traveling wave solution of the

generalized-Zakharov equations by used the simple equa-

tion method:-

iψt + ψxx − 2λ |ψ|2 ψ + 2ψv = 0,

vtt − vxx + (|ψ|2)xx = 0,
(47)
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Fig 3.b The traveling wave solution (40)

when the parameters take the special values

d = −1.5,r = 2,c = 2.5 and ξ0 = 3.

Fig 3.c The projection at t = 0 of the traveling

wave solution (39) when the parameters take the

special values d = −1.5,r = 2,c = 2.5 and ξ0 = 3.

Fig 3.d The projection at t = 0 of the traveling

wave solution (40) when the parameters take the

special values d = −1.5,r = 2,c = 2.5 and ξ0 = 3.

Fig 4.a The traveling wave solution (45)

when the parameters take the special values

d = 2.2,r = −0.5,c = 2.5 and ξ0 = 3.

Fig 4.b The traveling wave solution (46)

when the parameters take the special values

d = 2.2,r = −0.5,c = 2.5 and ξ0 = 3.

Fig 4.c The projection at t = 0 of the traveling

wave solution (45) when the parameters take the

special values d = 2.2,r = −0.5,c = 2.5 and ξ0 = 3.
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Fig 4.d The projection at t = 0 of the traveling

wave solution (46) when the parameters take the

special values d = 2.2,r = −0.5,c = 2.5 and ξ0 = 3.

Fig 5.a real part of the traveling wave solution

(55) when the parameters take the special values

d = −1.5,r = 0.5,q = 1.5,k = 2.5,p = 1,λ = 0.9
and ξ0 = 3.

Fig 5.b The imaginary part of the traveling wave solu-

tion (55) when the parameters take the special values

d = −1.5,r = 0.5,q = 1.5,k = 2.5,p = 1,λ = 0.9a

nd ξ0 = 3.

The generalized-Zakharov system are one of the fundamen-

tal models governing dynamics of nonlinear waves in one-

dimensional systems. It describes the interaction between

high-frequency and low frequency waves. The physically

most important example involves the interaction between

the Langmuir and ion-acoustic waves in plasmas [28]. Let

the traveling wave solutions of Eqs.(47) is the form:

ψ(x, t) = U(ξ)ei(px+qt), v(x, t) = V (ξ), ξ = kx − 2kpt.
(48)

The traveling wave transformation (48) permits us to re-

duce (47) into the following ODE:-

k2U ′′ − 2λU3 − (q + p2)U + UV = 0,

V ′′ =
−2

(4p2 − 1)

[

(U ′)2 + UU ′′
]

.
(49)

By integrate the second equation of Eqs.(49) two times we

get:

V =
−U2

4p2 − 1
+ c2, (50)

where c2 is the integration constant and substituting

Eq.(50) into the first one in Eqs.(42) we have:-

k2U ′′ − (q + p2 − c2)U − (2λ +
1

4p2 − 1
)U3 = 0 (51)

Balancing the highest order derivative U ′′ with the nonlin-

ear term U3 in Eq. (43). Therefore the solution of Eq.(51)

can be expressed as follow form :

U(ξ) = a0 + a1F (ξ), (52)

where a1 and a0 are constants to be determined later.

Substituting Eq.(52) along with the simple trial equation

F ′(ξ) = rF (ξ)+dF 2(ξ) into Eq.(51). Collecting all terms

with the same order of F (ξ) together, the left hand side

of Eq.(51) are converted into polynomial in F (ξ). Setting

each coefficient of these polynomials to be zero, we derive

a set of algebraic equations for a0, a1, p, q, λ and c2. Solv-

ing the set of algebraic equations by using Maple or Math-

ematica, software package to get the following results:

a0 = ±kr(4p2 − 1)
√

1 + 8λp2 − 2λ

1 + 8λp2 − 2λ
√

2(4p2 − 1)

a1 = ±
√

2(4p2 − 1)

1 + 8λp2 − 2λ
d k,

c2 = p2 +
k2r2

2
+ q,

(53)

where k, p, q, λ, r and d are arbitrary constants. When d <
0 and r > 0 the solution of Eq.(51) is given by
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U1(x, t) = ±kr(4p2 − 1)
√

1 + 8λp2 − 2λ

1 + 8λp2 − 2λ
√

2(4p2 − 1)

±
√

2(4p2 − 1)

1 + 8λp2 − 2λ

dkr exp [r(kx − 2kpt + ξ0)]

(1 − d exp [r(kx − 2kpt + ξ0)])
.

(54)

Therefore substituting Eq.(54) into Eqs.(48) and into

Eq.(50) to get the solution of Eqs.(47) as the following

form:

ψ1(x, t) = exp[i(px + qt)][±kr(4p2 − 1)
√

1 + 8λp2 − 2λ

1 + 8λp2 − 2λ
√

2(4p2 − 1)

±
√

2(4p2 − 1)

1 + 8λp2 − 2λ

dkr exp [r(kx − 2kpt + ξ0)]

(1 − d exp [r(kx − 2kpt + ξ0)])
].

(55)

v1(x, t) =
−1

4p2 − 1
[±kr(4p2 − 1)

√

1 + 8λp2 − 2λ

1 + 8λp2 − 2λ
√

2(4p2 − 1)

±
√

2(4p2 − 1)

1 + 8λp2 − 2λ

dkr exp [r(kx − 2kpt + ξ0)]

(1 − d exp [r(kx − 2kpt + ξ0)])
]2

+ p2 +
k2r2

2
+ q.

(56)

when d > 0 and r < 0 the solution of Eq. (51) is given by

U2(x, t) = ±kr(4p2 − 1)
√

1 + 8λp2 − 2λ

1 + 8λp2 − 2λ
√

2(4p2 − 1)

∓
√

2(4p2 − 1)

1 + 8λp2 − 2λ

dkr exp [r(kx − 2kpt + ξ0)]

(1 + d exp [r(kx − 2kpt + ξ0)])
.

(57)

Therefore substituting Eq.(57) into Eqs.(48) and into

Eq.(50) to get the solution of Eqs.(47) as the following

form:

ψ2(x, t) = exp[i(px + qt)]{±kr(4p2 − 1)
√

1 + 8λp2 − 2λ

1 + 8λp2 − 2λ
√

2(4p2 − 1)

∓
√

2(4p2 − 1)

1 + 8λp2 − 2λ

dkr exp [r(kx − 2kpt + ξ0)]

(1 + d exp [r(kx − 2kpt + ξ0)])
].

(58)

v2(x, t) =
−1

4p2 − 1
[±kr(4p2 − 1)

√

1 + 8λp2 − 2λ

1 + 8λp2 − 2λ
√

2(4p2 − 1)

∓
√

2(4p2 − 1)

1 + 8λp2 − 2λ

dkr exp [r(kx − 2kpt + ξ0)]

(1 + d exp [r(kx − 2kpt + ξ0)])
]2 + p2

+
k2r2

2
+ q.

(59)

3.6 Numerical solutions for the generalized-

Zakharov equations

In this section, we present some graphs of the traveling

wave solutions by taking suitable values of the parameters

to visualize the mechanism of generalized-Zakharov equa-

tions (47).

For d = −1.5,r = 0.5,q = 1.5,k = 2.5,p = 1,λ = 0.9
and ξ0 = 3, Fig 5.a illustrates the real part of the travel-

ing wave solution (55), Fig 5.b represents the imaginary

part of the traveling wave solution(55), Fig 5.c represents

the traveling wave solution (56), Fig 5.d the represents the

projection t = 0, of the real part solution (55), Fig 5.e rep-

resents the projection t = 0, of the imaginary part solution

(55) and Fig 5.f represents the projection t = 0, of the trav-

eling wave solution (56).

Also for d = 1.5, r = −0.5, q = 1.5, k = 2.5, p = 1, λ =
0.9 and ξ0 = 3., Fig 6.a illustrates the real part of the trav-

eling wave solution(58), Fig 6.b represents the imaginary

part of the traveling wave solution(58), Fig 6.c represents

the behavior of the traveling wave solution (59), Fig 6.d

the represents the projection t = 0, of the real part solution

(58), Fig 6.e represents the projection t = 0, of the imagi-

nary part solution (58) and Fig 6.f represents the projection

t = 0, of the traveling wave solution (56).

3.7 The coupled Maccaris equations

In this section, we use the simple equation method to solve

the coupled Maccaris equations in the following form:-

iQt + Qxx + QR = 0,

Rt + Ry + (|Q|2)x = 0.
(60)

This system brings nonlinear evolution equations that are

frequently used to describe location in a small part of space,

and motion of the isolated waves in varied fields, such as,

nonlinear optics, fluid mechanics, quantum field theory,

and plasma physics [28].Let the traveling wave solutions

of Eqs.(60) is the form:

Q(x, y, t) = U(ξ)ei(px+qy+kt), R(x, y, t) = V (ξ), ξ = x+y−ct.
(61)

The traveling wave transformation (61) permits us to re-

duce (60) into the following system of NODE’s:-

U ′′ − (k + p2)U + UV = 0,

(c + 1)V ′ = −2UU ′.
(62)

By integrate the second equation of Eqs.(62), we have:

V =
−U2

c + 1
+ c1. (63)

where c1 is the integration constant. Substituting Eq.(63)

into the first one in Eqs.(62), we get:-

U ′′ − (k + p2 − c1)U − 1

c + 1
U3 = 0. (64)
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Fig 5.c The traveling wave solution (56)

when the parameters take the special values

d = −1.5,r = 0.5,q = 1.5,k = 2.5,p = 1,λ = 0.9
and ξ0 = 3.

Fig 5.d The projection at t = 0 of the real part

from traveling wave solution (55) when the pa-

rameters take the special values d = −1.5, r =
0.5, q = 1.5, k = 2.5, p = 1, λ = 0.9 and ξ0 = 3.

Fig 5.e The projection at t = 0 of the

real part from traveling wave solution (55)

when the parameters take the special values

d = −1.5, r = 0.5, q = 1.5, k = 2.5, p = 1, λ = 0.9
and ξ0 = 3.

Fig 5.f The projection at t = 0 of the trav-

eling wave solution (56) when the parameters

take the special values d = −1.5, r = 0.5, q =
1.5, k = 2.5, p = 1, λ = 0.9 and ξ0 = 3.

Fig 6.a The real part of traveling wave solution

(58) when the parameters take the special values

d = 1.5, r = −0.5, q = 1.5, k = 2.5, p = 1, λ = 0.9
and ξ0 = 3.

Fig 6.b The imaginary part of traveling wave solution

(58) when the parameters take the special values

d = 1.5, r = −0.5, q = 1.5, k = 2.5, p = 1, λ = 0.9
and ξ0 = 3.
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Fig 6.c The traveling wave solution (59)

when the parameters take the special values

d = 1.5, r = −0.5, q = 1.5, k = 2.5, p = 1, λ = 0.9
and ξ0 = 3.

Fig 6.d The projection t = 0, of real part from

traveling wave solution (58) when the parameters take

the special values d = 1.5, r = −0.5, q = 1.5, k =
2.5, p = 1, λ = 0.9 and ξ0 = 3.

Fig 6.e The projection t = 0, of imagi-

nary part from traveling wave solution (58)

when the parameters take the special values

d = 1.5, r = −0.5, q = 1.5, k = 2.5, p = 1, λ = 0.9
and ξ0 = 3.

Fig 6.f The projection t = 0, of the traveling

wave solution (59) when the parameters take

the special values d = 1.5, r = −0.5, q =
1.5, k = 2.5, p = 1, λ = 0.9 and ξ0 = 3.

Fig 7.a The real part of traveling wave solution

(66) when the parameters take the special values

d = −1.5, r = 0.5, k = 0.75, p = 1, y = 4, c = 0.2
and ξ0 = 3.

Fig 7.b The imaginary part of traveling wave solution

(66) when the parameters take the special values

d = −1.5,r = 0.5,k = 0.75,p = 1,y = 4,c = 0.2
and ξ0 = 3.
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Balancing the highest order derivative U ′′ with nonlinear

term U3 in Eq. (64), hence N = 1. Therefore the solution

of Eq.(64) can be expressed as follows:

U(ξ) = a0 + a1F (ξ). (65)

where a0 and a1 are arbitrary constants to be determined

later. Substituting Eq.(65) along with simple trial equation

F ′(ξ) = rF (ξ)+dF 2(ξ) into Eq.(64). Collecting all terms

with the same order of F (ξ) together, the left hand side of

Eq. (64) are converted into polynomial in F (ξ). Setting

each coefficient of these polynomials to zero. we derive a

set of algebraic equations for a0, a1, p, k, c1 and c.Solving

the set of algebraic equations by using Maple or Mathemat-

ica, software package to get the following results:

a0 = ± r(c + 1)
√

2(c + 1)
, a1 = ±

√

2(c + 1)d, c1 =
r2

2
+p2+k,

(66)

where p, k, r, c and d are arbitrary constants. When d < 0
and r > 0 the solution of Eq. (64) is given by

U1(x, t) = ± r(c + 1)
√

2(c + 1)

±
√

2(c + 1)dr exp [r(x + y − ct + ξ0)]

(1 − d exp [r(x + y − ct + ξ0)])
.

(67)

Therefore substituting Eq.(67) into Eqs.(61) and (63) to get

the solution of Eqs.(60) as the following form:

Q1(x, t) = exp[i(px + qy + kt)][± r(c + 1)
√

2(c + 1)

±
√

2(c + 1)dr exp [r(x + y − ct + ξ0)]

(1 − d exp [r(x + y − ct + ξ0)])
],

(68)

V1 = R1(x, t) =
−1

c + 1
[± r(c + 1)

√

2(c + 1)

±
√

2(c + 1)dr exp [r(x + y − ct + ξ0)]

(1 − d exp [r(x + y − ct + ξ0)])
]2 +

r2

2
+ p2 + k.

(69)

When d > 0 and r < 0 the solution of Eq. (64) is

given by

U2(x, t) = ± r(c + 1)
√

2(c + 1)

∓
√

2(c + 1)dr exp [r(x + y − ct + ξ0)]

(1 + d exp [r(x + y − ct + ξ0)])
.

(70)

Therefore substituting Eq.(70) into Eqs.(61) and (63)

to get the solution of Eqs.(60) as the following form:

Q2(x, t) = exp[i(px + qy + kt)][± r(c + 1)
√

2(c + 1)

∓
√

2(c + 1)dr exp [r(x + y − ct + ξ0)]

(1 + d exp [r(x + y − ct + ξ0)])
].

(71)

V2 = R2(x, t) =
−1

c + 1
[± r(c + 1)

√

2(c + 1)

∓
√

2(c + 1)dr exp [r(x + y − ct + ξ0)]

(1 + d exp [r(x + y − ct + ξ0)])
]2 +

r2

2
+ p2 + k.

(72)

3.8 Numerical solutions for The coupled

Maccaris equations

n this section, we present some graphs of the traveling wave

solutions by taking suitable values of the parameters to vi-

sualize the mechanism of coupled Maccaris equations (60).

For d = −1.5, r = 0.5, k = 0.75, p = 1, y = 4, c = 0.2
and ξ0 = 3, Fig 7.a illustrates the real part traveling wave

solution (68), Fig 7.b represents the imaginary part of the

traveling wave solution(68), Fig 7.c represents the behavior

of the traveling wave solution (69), Fig 7.d the represented

the projection t = 0, of the real part of the traveling so-

lution (68), Fig 7.e represents the projection t = 0, of the

imaginary part of the traveling solution (68)and Fig 7.f rep-

resents the projection t = 0, of the traveling wave solution

(69).

Also for d = 1.5, r = −0.5, k = 0.75, p = 1, y = 4, c =
0.2and ξ0 = 3, Fig 8.a illustrates the real part of the trav-

eling wave solution (71), Fig 8.b represents the imaginary

part of the traveling wave solution(71), Fig 8.c represents

the behavior of the traveling wave solution (72), Fig 8.d

the represents the projection t = 0, of the real part travel-

ing wave solution (71), Fig 8.e represented the projection

t = 0, of the imaginary part traveling solution (71)and Fig

8.f represented the projection t = 0, of the traveling wave

solution (72).

4 Conclusions

In this paper, the simple equation method has been suc-

cessfully used to obtain the exact solution of nonlinear

Schrodinger equation with dual power law nonlinearity,

the variant Boussinesq nonlinear differential equations,

the generalized-Zakharov equations, the coupled Maccaris

equations. As the simple equation, we have used the

Bernoulli and Riccati equations. For the simple equation,

we have obtained a balance equation. By means of balance

equation, we obtained exact solutions of the studied class

of nonlinear PDEs, we have also verified that solutions we

have found are indeed solutions to the original equations.

Finally, we point out of either integrable or non-integrable

nonlinear coupled systems.
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